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The relaxation and breakup of Newtonian droplets is considered using the advected field approach. This
method allows one to follow the deformation of interfaces using an order parameter field �Biben et al.,
Europhys. Lett. 63, 623 �2003�� based on a Ginzburg-Landau equation. Using this method, it is possible to
follow the breakup of droplets and stability curves can be obtained in both two- and three-dimensional shear
and elongational flows. Finally, relaxation of a droplet is considered, following the application of an elonga-
tional flow. The results are compared with previous experimental data �Ha and Leal, Phys. Fluids 13, 1568
�2001��, and are found to be in satisfactory agreement. The method is general enough to be applied to other
non-Newtonian fluids, such as Oldroyd-B fluids or viscoplastic materials.
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INTRODUCTION

The droplet breakup problem was introduced long ago by
Taylor �1,2� both experimentally and theoretically. Using
roller devices, he was able to produce two-dimensional shear
and elongational flows and applied them to investigate vis-
cous droplet deformation in a viscous suspending fluid. Such
flows can lead to stable droplet deformation or to droplet
breakup. If �1 is the droplet viscosity, �2 the suspending
fluid viscosity, �̇ the rate of deformation in shear or elonga-
tion, and � the interfacial tension, two dimensionless control
parameters can be constructed to determine droplet dynam-
ics. The first one is the capillary number Ca=�2R�̇ /�, and
the second is the viscosity ratio �=�1 /�2.

Following this approach, Grace �3� demonstrated experi-
mentally that critical deformations and capillary numbers for
breakup can be determined as functions of � in shear and
elongational flows, over ten decades. This was also investi-
gated in the case of mixed flows �4�. Results from Grace �3�
show that it is easier to break droplets in elongation than in
shear. A shear flow is indeed the combination of an elonga-
tion along the diagonal axes, at 45� from the shear direction,
and a rotation tilting the drop. The competition between
these two components is controlled by the viscosity ratio; in
particular, a droplet cannot be broken in a shear flow �3�
when the viscosity ratio � is larger than roughly 3.5. At large
viscosity ratios, the rotational component of the flow tends to
orient the main axis of the drop along the shear direction,
where elongational effects are weak.

The shape of the droplets in such flows is also a point of
interest. Torza et al. �5� have shown that droplet shapes can
vary quite a lot with the viscosity ratio �, in particular small
ratios lead to droplets with pointed ends. The prediction of
droplet deformation has been considered from a theoretical
as well as a numerical point of view. Analytical models
based on small deformation theory �6�, slender body theory
�7,8�, or using matched asymptotics �9� have been devel-

oped, allowing predictions of the critical capillary number
for droplet breakup, also named the onset of “burst.” In par-
ticular, using perturbations of the flow around the droplet,
stability analysis leads to a surprisingly good prediction of
the critical capillary number �6�, as a function of the viscos-
ity ratio �. With the development of numerical methods such
as the boundary integral method �10–14�, calculations have
also made considerable advances, allowing for more intricate
shapes to be obtained accurately. This is of utmost impor-
tance when looking at nonlinear effects, as exhibited when
stretching filaments or breaking drops into two or more drop-
lets, or forming satellite droplets �2,15�.

The numerical technique should not only allow one to
predict the burst criterion �in a possible large range of vis-
cosity ratios� but should also give the exact details of the
droplet rupture sequence, such as the rupture time, the shape
of the filament at pinchoff �15–19�, the number of droplets,
and their size �3,19�. In particular, close attention needs to be
paid to the physics involved in the rupture process, in order
to determine whether it is initiated by capillary waves �15� or
if it has a deterministic nature, in relation to the well-defined
Rayleigh instability �20,21�.

Along with the boundary integral methods, new tech-
niques appeared such as the level set �19,22–24�, the
volume-of-fluid method �25�, and the phase-field approach
�26–31�, which allow computation of two- and three-
dimensional flows, for various deformable entities under
flow, such as droplets or vesicles. The advantage of these
new methods relies on their ability to deal with various con-
stitutive equations for the inner or outer fluid �Oldroyd-B
fluid �24�, yield-stress fluid �32��. Also, such problems can
be solved in the whole domain, without having to consider
explicitly the moving interfaces. The complexity of the par-
ticle can also be investigated; in particular one may study
drops with compatibilizers �33,34�, capsules �35�, or vesicles
�26�. Finally, the ability of such a technique to predict
breakup �and coalescence� seems promising for the under-
standing of multiphase flows �29,30�, and the rheology of
emulsions, which have been problems of interest for many
years �1,36–38�.

In this paper, we propose to test the ability of the advected
phase-field approach �27� to investigate the dynamics of
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droplet breakup and relaxation. The main motivation is to
compute stability curves as depicted by Grace �3�, but also to
follow the relaxation of droplets following a step-up in elon-
gation, as studied previously �12,39,40�. Numerical simula-
tions will then be compared with previous studies, including
experimental results.

In Sec. I, the model is presented. Then finite-size effects
are discussed �Sec. II� in the case of relaxation of a long
drop, with no applied flow. Indeed, confinement can affect
the dynamics of drop relaxation. Stability curves are exhib-
ited and compared with experimental data and previous com-
putations �Sec. III�. In Sec. IV, we focus on droplet relax-
ation, following the paper of Ha and Leal �40�, where
extensive data are reported on the effect of the initial stretch
on droplet relaxation. Comparisons between numerical data
and experiments are discussed.

I. THE ADVECTED FIELD METHOD

The main idea inherent in this method is to consider a
fluid-fluid interface as a diffuse locus where a function �
�phase field� goes smoothly from −1 to +1. In this case, −1
designates one fluid and +1 the other fluid component. This
method is well adapted for describing binary fluids, in par-
ticular immiscible fluids. � varies with time t and position r
and may be regarded as a rescaled concentration, as in dif-
fusion problems.

For the study of such binary systems, one can use the
following free-energy functional F���, a functional of ��r , t�
�41�:

F��� = �
V
�W��� +

�2

2
����2�dV �1�

where W��� is the thermodynamic potential

W��� =
1

4
�1 − �2�2. �2�

This determines the two equilibrium values ±1, and the
shape across a planar interface at equilibrium, which is sim-
ply given by ��r�=tanh�r /�	2�. The interface thickness is
thus �	2. The temporal evolution equation for the field �
shows the competition between the relaxation to the equilib-
rium profile, described here using an Allen-Cahn approach
�42,43�, and the advection due to the flow field

��

�t
+ v · �� = − 	�dW

d�
− �2
�� �3�

where v is the velocity field, and 1/	 is the Allen-Cahn
relaxation time. A conservative version of this equation can
be obtained by replacing the constant 	 by −	
, 	 being in
this case a diffusion constant and 
 the Laplacian operator
�Cahn-Hilliard prescription�. Although this kind of theory
has been used for the description of thermocapillary flows
�44�, it cannot describe the dynamics of mesoscopic droplets
accurately. The main reason is due to the value of �, the
interfacial thickness, which should be around a 1 nm. For a
10 �m droplet �radius R�, �
10−4R is out of reach: in prac-

tice we use 0.04R instead. Overestimation of � has an impor-
tant consequence: the interfacial tension ��−1

+1	2W���d�
�41�, which is implicitly contained in the Allen-Cahn ap-
proach, is too large, and is not coupled with the velocity field
in this approach. A drop will thus relax to equilibrium
�spherical shape� even in the absence of flow when the dy-
namics is conserved, whereas it will vanish if the dynamics
is not. As described earlier �26,27,45�, we propose to add a
counterterm, which cancels the effect due to the Allen-Cahn
surface tension, in order to avoid this problem. The true sur-
face tension � is accounted for in the velocity field dynam-
ics. It is important to note that this counterterm improves the
stability of satellite droplets in a very efficient way, other-
wise they would simply disappear in a standard Allen-Cahn
formulation. We shall see examples of this fact below. The
new formulation is

��

�t
+ v · �� = − 	�dW

d�
− �2�
� + c����� . �4�

In this new equation, c is the local curvature. This expression
can be derived from an asymptotic expansion, corresponding
to the limit �→0. The counterterm simply cancels the first-
order correction in �, and thus extends the validity of the
theory to larger values of �. At this order, it replaces the
Laplacian of � by �2� /�r2, the second-order derivative in
the normal direction only. The equilibrium shape of the in-
terface is still given by

��r� = tanh�r/�	2� �5�

but this is now valid whatever the curvature of the interface,
because only the radial �normal� component r measured
across the area is relevant here.

Due to the presence of the restoring term on the right-
hand side of �4�, the field � now becomes a passive variable
whose value is prescribed by the hyperbolic tangent formula.
�=0 corresponds to the real interface locus.

Finally, the velocity field is the solution of the momentum
equation:

�� �v

�t
+ v · �v� = − �p + � · � + Fint �6�

where � is the common density of both fluids, v the macro-
scopic velocity field, � the stress tensor, and Fint the force
due to interfacial tension, which is located at the interface
and has been added to the momentum balance. In fact, Fint is
simply given by

Fint =
c

2
��� . �7�

The shape function of the interface �r� can be defined by
�� /2��r�n, where n is a unit normal vector to the inter-
face pointed outward, �r� becoming a Dirac distribution in
the sharp interface limit. Note that the curvature is defined by
c=−� ·n �negative for a sphere�. The stress field � is given
by Newton’s law, �=2����D, where D is the symmetric part
of the velocity gradient tensor �v. The viscosity ���� is
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domain dependent and the system of equations �4�, �6�, �7�
may be solved together with the incompressibility condition

� · v = 0. �8�

The boundary conditions and initial conditions will be
specified below. Note that the viscosity is allowed to vary
smoothly across the interface by prescribing it to be

���� =
1

2
��1�1 − �� + �2�1 + ��� . �9�

The value corresponding to the location of the interface
��=0� is simply the average ��1+�2� /2. Note that, when
using �6�, care needs to be taken of the derivative of the
viscosity, which is no longer a constant. The method can also
allow for density contrasts, but this will not be studied here.
Inertia is controlled by the Reynolds number Re=�R2�̇ /�2,
when a deformation rate �̇ is applied, and conversely by a
Suratman number Su=�R� /�2

2, when relaxation phenomena
are considered. In this last situation, the velocity scale is
indeed a result of the capillary relaxation: the surface-
tension-induced velocity is � /�2. In the case of interest,
these two dimensionless parameters �Re and Su� are quite
small, as in Stokes flow.

The method used is based on the calculation of �, the
pressure p, and the velocity field v. � is found using a finite
difference scheme �Eq. �4��, whereas the velocity field is
obtained from �6� in the Fourier space. For this purpose, we
use a regular rectangular grid, with cubic �three dimensional
�3D�� or square elements �2D or 3D axisymmetric�. The
spacing is chosen to be exactly �, where �=0.04R. The flow
field v can be divided into two components; the undisturbed
external flow field vext �shear or elongational flow�, and a
contribution u, which is due to the flow induced by the drop-
let. The boundary conditions are chosen to be periodic for
the advected field �, and also for u=v−vext.

This enables us to solve for relatively small droplets, but
satellite droplets smaller than � are obviously not visible. In
such cases, other more technical methods may be relevant
such as the ones used in solidification problems, like the
boundary element method of Almgren �46� or the phase-field
model by Wheeler and coauthors �47�.

II. FINITE SIZE EFFECTS

It is important to analyze the strong influence of finite size
effects on the breakup sequence, for example when follow-
ing the relaxation of a drop in a quiescent fluid. To discuss
this point in more detail, we specify the geometry and the
values of the resolution parameters such as the grid spacing
and its size. Since we considered 2D and 3D axisymmetric
situations, the resolution box is a rectangle of size
Nxh�Nyh, where h is the lattice spacing �square elements�.
In 2D, x and y denote the usual coordinates, while in a 3D
axisymmetric geometry, x corresponds to the coordinate
along the axis and y the radial coordinate. A droplet is ini-
tially placed at the center of the grid. Since we make exten-
sive use of Fourier Transformations, we still consider the full
grid for 3D axisymmetric situations, while a direct space

implementation could reduce the problem to a quarter of the
grid only, accounting for the symmetries. The boundary con-
ditions on the velocity field are chosen to reduce the bound-
ary effects: we considered periodic boundary conditions for
the counter flow induced by the drop, as specified in Sec. I.
We fixed h=0.04R in order to have a sufficient resolution to
describe the rapid variation of the advected field across the
interface, and to have a small enough value of �, the phase-
field width. All results reported in Secs. III and IV have been
obtained with Nx=1200 and Ny =800, corresponding to a
typical box size 48R�32R in units of the drop radius. We
also considered a smaller box Nx=800 and Ny =200
�32R�8R� that were shown to be too small to provide robust
data.

We investigated the simple case of a spherocylindrical
drop of initial half-length L /R=15 �L the half-length R the
radius of the equivalent spherical drop� to determine the in-
fluence of finite size effects. We varied Nx and Ny in a large
range: 800�Nx�1500 and 200�Ny �1500. We also tested
the breakup sequence for L /R=18 and a 1500�1500 grid.
We consider that two fragmentation sequences are equivalent
when small quantitative differences are observed, as shown
in Fig. 1.

In Table I, results obtained for L /R=15 are summarized.
A full line separating two different box sizes indicates differ-

TABLE I. Summary of the data obtained for relaxation of a
spherocylindrical drop with an initial half-length L /R=15. The
straight solid lines separate regions with very different fragmenta-
tion sequences while dashed lines correspond to apparent differ-
ences only.

FIG. 1. Dimensionless position of fragment edges as a function
of the reduced time t*= t� /�2R �i.e., trajectories�. L /R=15. Two
different box sizes give rise to similar scenarios.
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ent fragmentation sequences. The dashed line corresponds to
equivalent results, but due to the proximity of a transition
between five fragments �L /R=15� and seven fragments
�L /R=15.1� for a 1200�800 grid, a slight difference is ob-
served in the fragmentation sequence. Consequently, we also
explored neighboring values of L /R to check this feature.
From Table I, 1200�800 seems to be a good compromise
between accuracy and computational speed. Therefore, in
what follows, we will use such a mesh corresponding to a
box size 48R�32R.

III. STABILITY CURVES

We first investigate the ability of the method to predict
deformation and breakup of drops accurately. In order to do
so, we consider Buckmaster and Flaherty’s analytical solu-
tion �48� of the flow around a droplet in a 2D elongational
applied flow. This flow corresponds to vext

x = �̇x, vext
y =−�̇y,

where x is the coordinate along the axis of the drop. The
authors �48� were able to calculate the deformation of the
drop up to the burst transition. Results of our simulations are
presented in Fig. 2 and compared with their approximate
theory. Below a critical capillary number Cac, the drop de-
forms until it reaches a steady shape �3� that can be charac-
terized by its elongation 1−B /L, where B is the half-width,
and L is the half-length. B /L being always smaller than 1,
the drop has a prolate shape. Above Cac, the drop is elon-
gated until it breaks. Such a behavior corresponds to a saddle
node bifurcation; thus an unstable branch exists which
merges with a stable one at a critical capillary number. While
the stable branch corresponds to convex shapes, the unstable
one accounts for non-convex shapes. The critical capillary
number is determined by the maximum of the curve in Fig.
2, giving approximately Cac
0.18, according to their re-
sults. Figure 2 also shows a good comparison between the
theory �48� and results obtained with the present advected
field �AF� method for �=1. The predictions of the AF
method are quite accurate.

The case of a drop subjected to a shear flow or an elon-
gational flow is considered next. The results are shown in
Fig. 3. Numerical data have been obtained for two particular
geometries: a 2D geometry for both the droplet and the ap-

plied flow �shear or elongation�, and a 3D axisymmetric ge-
ometry for an applied elongational flow. In the 2D situation,
the shear flow is defined by vext

x = �̇y, vext
y =0, and the elon-

gational flow by vext
x = �̇x, vext

y =−�̇y. The 3D axisymmetric
elongational flow corresponds to vext

x = �̇x, vext
r =−�̇r /2, in cy-

lindrical coordinates, where x is the direction of elongation
and r is the radial coordinate. A comparison between the
numerical data and the experiments reported in �3� is difficult
since the experimental geometry is a combination of 2D fea-
tures, like the applied flow in shearing and elongation experi-
ments using the four-roll apparatus �4�, and 3D features as-
sociated with droplet deformation. It is interesting to note the
overall qualitative agreement between the numerical data and
the experimental one. For example, in the 2D shear situation,
there is a stable region at viscosity ratios above �=4 roughly,
as in 3D. Finally, the 3D axisymmetric elongation data com-
pare very well with the four-roll apparatus experiments �3,4�.
Quantitative discrepancies are, however, observed when
comparing 2D data to experiments, in particular in shearing
flows. This shows that 2D models, although not fully quan-
titative, can be helpful for the study of multiphase flows.
Furthermore, the excellent agreement in 3D demonstrates the
ability of the AF formulation to capture the physics involved
in the burst transition, at least for the viscosity ratios we
considered.

Our study was limited to viscosity ratios between 0.01
and 100. This is already a very satisfactory result, covering
four decades in �. When small viscosity ratios are considered
�say ��0.01�, droplets exhibit pointed ends, and the method
fails to predict such shapes because it is unable to account
for large curvatures. Indeed, the small radius of curvature at
the ends becomes close to the size of the mesh �, therefore
the method cannot give accurate solutions. This AF method
is also in agreement with the small deformation theory �6�,
which predicts well the data in this region, as pointed out by
the authors in previous work �27�. Our data are not exhaus-
tive, in particular 3D simulations of shear flows are not pro-
vided due to the long times involved for carrying out such
computations. Some of these data is available in another pa-
per �25�.

FIG. 2. Capillary number vs elongation parameter 1−B /L
��=1� �48�.

FIG. 3. Critical capillary number Cac vs viscosity ratio � in 2D
and 3D shear and elongational flows.
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IV. DROPLET RELAXATION

The relaxation of droplets following an elongation is an
interesting problem, since it raises the questions of the num-
ber of fragments, and the relaxation of the drop to its initial
state or not. It has been explored both experimentally
�39,40,49–51� and numerically �12,50,51�. It is well known
that the initial deformation controls the fate of the relaxing
droplet. The initial length L is an obvious control parameter,
but parameters like the capillary number Ca and the viscosity
ratio � are also of importance. Recently, Ha and Leal �40�
considered the problem of droplet relaxation following a
step-up in elongation, using their four-roll mill apparatus. At
low Reynolds numbers, when the capillary number is larger
than its critical value for breakup, they showed that the criti-
cal stretch ratio L /R for breakup increases sharply with the
capillary number. An interesting feature also occurs, which is
the restabilization of the droplet when increasing the initial
stretch ratio at a fixed capillary number. The droplet relaxes
first to a sphere at small initial stretch ratio, then into two
droplets �first transition�, then relaxes into a sphere again,
and finally into three droplets �second transition�. This fea-
ture was observed at a viscosity ratio �=0.056 and for
Ca/Cac=2.15 �40�. Therefore, more investigations remain to
be done in order to see whether this feature is always present,
and if such a cascade of restabilizations is possible.

This type of approach is now conducted, in a 3D axisym-
metric situation.

Before discussing the results in details, we shall first iden-
tify the parameters entering in this problem. The elongation-
relaxation experiments are essentially controlled by three pa-
rameters: the capillary number Ca �or alternatively Ca/Cac�,
the stretch ratio L /R, which corresponds to the maximal
elongation of the drop, and the viscosity ratio �. Whereas
these three parameters play a role during the elongation
stage, and determine the shape of the drop after relaxation,
only � plays a role during the relaxation stage �for a given
initial shape�. Indeed the capillary number is not defined �no
applied flow�, and the capillary time can be absorbed by a
redefinition of the time scales t*= t� /�2R, where t* is the
dimensionless time. We shall thus mainly focus on Ca/Cac
and L /R to control the initial shape of the relaxing drop, and
the particular role of � will be briefly discussed.

A. Comparison with experiments

Here we consider the experimental situation of Ha and
Leal where the drop is elongated until it reaches a given
stretch ratio, and follows a free relaxation afterwards. A first
set of data is obtained for Ca/Cac=1.05, and a viscosity ratio
�=0.2. These values are very similar to those used by Ha
and Leal �they used �=0.209 and found Cac=0.135, whereas
here �=0.2 and Cac=0.151�. The results are presented in Fig.
4, showing the effect of a change in the stretch ratio L /R.
This enables to determine a critical stretch ratio �L /R�c

above which the drop starts to break during the relaxation
stage. Figure 4 shows the variation of the drop elongation
with time. The instantaneous stretch ratio L�t� /R should not
be confused with the maximum stretch ratio L /R. The fea-
tures of the curves L�t� /R are as follows: when L /R is

smaller than roughly 3.9, the drop is stretched and relaxes to
a spherical shape, whereas if L /R is larger than 3.9, the drop
relaxes into two droplets. Note that a satellite droplet is also
observed �L /R=4.2�, with a very small size of the order of a
few times the value of �. Attention thus needs to be paid
regarding this feature both in simulations and in experiments.
Our observations are however in good agreement with the
experiments of Ha and Leal.

While the previous example corresponds to a capillary
number very close to the critical capillary number
�Ca/Cac=1.05�, it is interesting to consider larger values. We
can carry out a similar analysis for Ca/Cac=2.11 �and still
�=0.2�. The results are presented in Table II and show simi-
larities with the previous example �a succession of one, two
and three fragments with a satellite central drop while in-
creasing the stretch ratio L /R�, but more interesting is the
restabilization sequence.

The transition from two to three droplets occurs between
L /R=7.4 and 7.45. Then a restabilization is observed for
L /R=7.9 for which two fragments are produced. Again, we
find the formation of three fragments at L /R=8.0, indicating
that the region of restabilization was very small. Whereas Ha
and Leal reported a restabilization scenario from two to one

TABLE II. Breakup events for different L /R ��=0.2,
Ca=0.326, Ca/Cac=2.11�. N is the number of fragments.

L /R N Comment

6.5 1

7.0 1

7.1 1

7.2 2

7.4 2

7.45 3 Satellite central drop

7.8 3 Satellite central drop

7.9 2 No central drop

8.0 3 Small central drop

8.4 3 Small central drop

8.5 5 Alternating large and satellite drops

FIG. 4. Ca=0.159. Cac=0.151. Ca/Cac=1.05. Relaxation pat-
terns at different values of L /R �3.5,3.8,4.0,4.2� and �=0.2.
t*= t� /�2R.
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droplet �at a viscosity ratio of �=0.056, which we shall con-
sider below�, the restabilization situation observed here
seems to be different.

It is tempting to increase the capillary number further in
order to observe more complex sequences. This is precisely
what is done for �=0.2, Ca/Cac=3, as shown in Fig. 5. We
find a larger critical value �L /R�c=8.15 in this case, in agree-
ment with the experiments, but the overall fragmentation se-
quence seems to be simpler than the previous one. We shall,
however, mention that we do not observe the fragmentation
into two droplets for this set of parameters, instead, the drop
relaxes into three droplets, after cessation of flow, above the
critical stretch ratio. For this computation, as the capillary
number is rather large due to the large elongation rate used
�steep increase of L /R in time�, the time step in the finite
difference scheme has been reduced to avoid instabilities.

These three examples illustrate quite well the complexity
of the fragmentation sequences, and the non trivial depen-
dence on the control parameters. We could observe a high
sensitivity of the results to the control parameters, in particu-
lar the restabilization observed in the second example pre-
sented above only exists in a very narrow range of param-
eters �between L /R=7.9 and 8.0� that could be easily missed
experimentally.

To complete the comparison with the experimental work
of Ha and Leal, we plot the critical stretch ratios obtained for
�=0.2 in Fig. 6.

These values correspond to the first transition from a
sphere to two or more spherical droplets plotted as a function

of the capillary ratio Ca/Cac. The capillary numbers are all
higher than the critical one, to be able to obtain droplet
breakup. Also shown is the experimental data by Ha and Leal
�Fig. 3 of their paper�, found to be in qualitative agreement.
The discrepancy might be due to the difficulty to control the
stretching rate accurately in the experiments. Another expla-
nation may be that a smaller value of � is needed in the
simulations for them to become more accurate. This was not
possible due to the large systems considered here. Let us
finally mention the accuracy of our 2D simulations found
previously �Fig. 2� for similar values of �.

B. Influence of the capillary number

In the previous part, we observed that the capillary num-
ber plays a complex role in the restabilization process. Our
purpose is now to identify this role more precisely. With this
aim, we shall consider a fixed stretch ratio L /R=7.5, and
investigate the relaxation sequence as a function of the cap-
illary number used to produce the elongated shape. We thus
follow the horizontal path plotted in Fig. 6. This value has
been chosen to match the data of Ha and Leal �Fig. 2 of Ref.
�40��, still at a viscosity ratio of 0.2. Figures 7�a�–7�c� show
the different relaxation mechanisms, following stretching
rates at capillary numbers of 0.212, 0.326, and 0.455, respec-
tively.

The first breaking pattern leads to the formation of a long
elongated droplet in the center, which eventually breaks due
to end pinching �15–18�, thus forming three droplets. In the
second case, larger side droplets are formed and the central
resulting droplet is smaller, but they are still three. Finally, as
the capillary number is increased again, the initial shape of
the droplet is different, exhibiting pointed ends, as expected
for such a small viscosity ratio. This feature is due to the fast
elongation process, inhibiting the creation of bulbed ends.
Thus the elongated droplet relaxes into one final drop.

Whereas the elongated drops present bulbed ends at small
capillary numbers, favoring fragmentation in a relaxation ex-
periment, they do not present these features at large capillary
numbers. In this case, the bulbed ends responsible for the
breakup process must be produced during the relaxation,
which can take time. If relaxation is not efficient enough for
the drop to develop bulbed ends rapidly, then the droplet
relaxes to a sphere.

Large values of Ca/Cac thus do not favor the fragmenta-
tion, and the most interesting restabilization sequences were
observed around Ca/Cac=2.11–2.15, at �=0.2.

C. Restabilization

In this part we investigate the restabilization sequence in
more detail. We would like to emphasize that this feature is
generic, and can be observed for many values of the param-
eters. Moreover, we also would like to show that such resta-
bilization sequences are very sensitive to the precise values
of the parameters and can present a huge richness. We thus
used a set of parameters also considered by Ha and Leal �40�
��=0.056 and Ca/Cac=2.15�, and we shall compare results
with the previous restabilization sequence ��=0.2 and
Ca/Cac=2.11, from Table II�.

FIG. 5. Ca=0.455. Cac=0.151. Ca/Cac=3.0. Relaxation pat-
terns at different L /R �8.1,8.2,8.5� and �=0.2. t*= t� /�2R.

FIG. 6. Critical L /R vs Ca/Cac at a viscosity ratio �=0.2.
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The observations are shown in Fig. 8, where the droplet
has been elongated from its initial spherical shape to a cer-
tain state characterized by a value of L /R, at a capillary
number Ca=0.359. For this case, the critical capillary num-
ber is found to be Cac=0.167 �thus Ca/Cac=2.15�. An inter-
esting series of droplet breakups is observed. This scenario is
very similar to the experiments of Ha and Leal: first the
droplet is elongated but relaxes to a single sphere L /R=6.9;
the droplet breaks up into two spheres L /R=7.1; the droplet
restabilizes and goes back into a sphere L /R=7.3; the droplet
breaks into three droplets L /R=7.5; the central droplets dis-
appears and two droplets are obtained L /R=7.7; and finally
the central drop is formed again and we end up with three
drops L /R=8.5

As expected from the work of Ha and Leal �40�, these
results confirm the idea that the mechanism of relaxation,
which is governed by two parameters, � and the initial shape
of the droplet, is based on the following idea. A droplet re-
laxes by forming first bulbed ends, which need to have
enough time to develop �12�. After this deformation is
achieved, the droplet motion is governed by the stability of
the filament, which can be described accurately by linear
stability analysis �12,20�. Following the work of Tomotika
�20,21�, predictions of the most unstable mode can be ob-
tained when the viscosity ratio � is known. Of course, this
study has been carried out when the outer fluid is at rest, but
nevertheless it seems to predict rather well the onset of sta-
bility �12�. Analysis of the previous droplet shapes reveals
that, after bulbed ends are formed, the length of the filament
seems to predict rather well the evolution of the droplet to an
unstable situation or not.

Another interesting aspect is the restabilization of the
droplet independently of its size, as revealed by the succes-
sion of shapes in Fig. 8. From L /R=7.1 to 7.3, the droplet
restabilizes. From L /R=7.5 to 7.7, restabilization is also ob-
tained, but now the central droplet has disappeared. This
phenomenon is also observed at different viscosity ratios,
and could be universal. Even in this case the restabilization
differs from the situation presented in Table II by the fact
that the central fragments for �=0.2 are small satellite drop-
lets whereas for �=0.056 they correspond to the largest frag-
ment.

A case of interest would be to follow systematically the
fragmentation process as L /R is increased and for a fixed �.
This should allow one to determine whether fragmentation is
governed by a deterministic process or exhibits a chaotic
behavior. This still requires improvement of the numerical
scheme presented here in terms of precision �i.e., smaller
values of �, mesh adaptation, etc.� in order to capture the
formation of smaller daughter droplets including satellites.
This work is currently under way.

CONCLUSION

We presented a comparison between the elongation-
relaxation experimental data obtained by Ha and Leal and
the numerical data obtained with the advected field method.
Although we observe quantitative differences between 2D
shear simulations and 3D experimental data, which can be
explained by the difference of dimensionality, the numerical
data obtained in 3D are in very good agreement with the

FIG. 7. Relaxation pattern following elongation. Stretch ratio
L /R=7.5. �=0.2. Cac=0.151. t*= t� /�2R. �a� Ca=0.212, Ca/Cac

=1.4. �b� Ca=0.326, Ca/Cac=2.15. �c� Ca=0.455, Ca/Cac=3.

FIG. 8. Relaxation of droplets after stretching at a given L /R
�Ca/Cac=2.15, �=0.056, Cac=0.167�. t*= t� /�2R.
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experimental findings. In particular, the method is able to
reproduce the complex fragmentation-restabilization se-
quence observed experimentally, and may give the possibil-
ity of investigating simpler drop geometries such as the
spherocylindrical shape. The observed behaviors are deter-
ministic, and the restabilization sequences are responsible for
the apparent noise in the data. However, this poses the prob-
lem of the influence of thermal fluctuations. These fluctua-
tions have not been introduced in the model, but are expected
to become important when the drop is elongated. Indeed, a

thermal noise in the problem could reduce the restabilization
processes, and reduce the data dispersion. This is of course a
conjecture that needs to be further investigated.
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